Economics at your fingertips  

Long-range Auto-correlations in Limit Order Book Markets: Inter- and Cross-event Analysis

Martin Magris, Jiyeong Kim, Esa Rasanen and Juho Kanniainen

Papers from

Abstract: Long-range correlation in financial time series reflects the complex dynamics of the stock markets driven by algorithms and human decisions. Our analysis exploits ultra-high frequency order book data from NASDAQ Nordic over a period of three years to numerically estimate the power-law scaling exponents using detrended fluctuation analysis (DFA). We address inter-event durations (order to order, trade to trade, cancel to cancel) as well as cross-event durations (time from order submission to its trade or cancel). We find strong evidence of long-range correlation, which is consistent across different stocks and variables. However, given the crossovers in the DFA fluctuation functions, our results indicate that the long-range correlation in inter-event durations becomes stronger over a longer time scale, i.e., when moving from a range of hours to days and further to months. We also observe interesting associations between the scaling exponent and a number of economic variables, in particular, in the inter-trade time series.

New Economics Papers: this item is included in nep-mst
Date: 2017-11
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link) Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Series data maintained by arXiv administrators ().

Page updated 2017-12-05
Handle: RePEc:arx:papers:1711.03534