Financial Time Series Prediction Using Deep Learning
Ariel Navon and
Yosi Keller
Papers from arXiv.org
Abstract:
In this work we present a data-driven end-to-end Deep Learning approach for time series prediction, applied to financial time series. A Deep Learning scheme is derived to predict the temporal trends of stocks and ETFs in NYSE or NASDAQ. Our approach is based on a neural network (NN) that is applied to raw financial data inputs, and is trained to predict the temporal trends of stocks and ETFs. In order to handle commission-based trading, we derive an investment strategy that utilizes the probabilistic outputs of the NN, and optimizes the average return. The proposed scheme is shown to provide statistically significant accurate predictions of financial market trends, and the investment strategy is shown to be profitable under this challenging setup. The performance compares favorably with contemporary benchmarks along two-years of back-testing.
Date: 2017-11
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/1711.04174 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1711.04174
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).