EconPapers    
Economics at your fingertips  
 

Improved Density and Distribution Function Estimation

Vitaliy Oryshchenko () and Richard J. Smith

Papers from arXiv.org

Abstract: Given additional distributional information in the form of moment restrictions, kernel density and distribution function estimators with implied generalised empirical likelihood probabilities as weights achieve a reduction in variance due to the systematic use of this extra information. The particular interest here is the estimation of densities or distributions of (generalised) residuals in semi-parametric models defined by a finite number of moment restrictions. Such estimates are of great practical interest, being potentially of use for diagnostic purposes, including tests of parametric assumptions on an error distribution, goodness-of-fit tests or tests of overidentifying moment restrictions. The paper gives conditions for the consistency and describes the asymptotic mean squared error properties of the kernel density and distribution estimators proposed in the paper. A simulation study evaluates the small sample performance of these estimators. Supplements provide analytic examples to illustrate situations where kernel weighting provides a reduction in variance together with proofs of the results in the paper.

Date: 2017-11, Revised 2018-06
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/1711.04793 Latest version (application/pdf)

Related works:
Working Paper: Improved density and distribution function estimation (2018) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1711.04793

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2019-06-07
Handle: RePEc:arx:papers:1711.04793