Economics at your fingertips  

Strict Local Martingales and Optimal Investment in a Black-Scholes Model with a Bubble

Martin Herdegen and Sebastian Herrmann

Papers from

Abstract: There are two major streams of literature on the modeling of financial bubbles: the strict local martingale framework and the Johansen-Ledoit-Sornette (JLS) financial bubble model. Based on a class of models that embeds the JLS model and can exhibit strict local martingale behavior, we clarify the connection between these previously disconnected approaches. While the original JLS model is never a strict local martingale, there are relaxations which can be strict local martingales and which preserve the key assumption of a log-periodic power law for the hazard rate of the time of the crash. We then study the optimal investment problem for an investor with constant relative risk aversion in this model. We show that for positive instantaneous expected returns, investors with relative risk aversion above one always ride the bubble.

Date: 2017-11
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link) Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Series data maintained by arXiv administrators ().

Page updated 2017-12-23
Handle: RePEc:arx:papers:1711.06679