EconPapers    
Economics at your fingertips  
 

Estimation Considerations in Contextual Bandits

Maria Dimakopoulou, Zhengyuan Zhou, Susan Athey and Guido Imbens

Papers from arXiv.org

Abstract: Contextual bandit algorithms are sensitive to the estimation method of the outcome model as well as the exploration method used, particularly in the presence of rich heterogeneity or complex outcome models, which can lead to difficult estimation problems along the path of learning. We study a consideration for the exploration vs. exploitation framework that does not arise in multi-armed bandits but is crucial in contextual bandits; the way exploration and exploitation is conducted in the present affects the bias and variance in the potential outcome model estimation in subsequent stages of learning. We develop parametric and non-parametric contextual bandits that integrate balancing methods from the causal inference literature in their estimation to make it less prone to problems of estimation bias. We provide the first regret bound analyses for contextual bandits with balancing in the domain of linear contextual bandits that match the state of the art regret bounds. We demonstrate the strong practical advantage of balanced contextual bandits on a large number of supervised learning datasets and on a synthetic example that simulates model mis-specification and prejudice in the initial training data. Additionally, we develop contextual bandits with simpler assignment policies by leveraging sparse model estimation methods from the econometrics literature and demonstrate empirically that in the early stages they can improve the rate of learning and decrease regret.

Date: 2017-11, Revised 2018-12
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/1711.07077 Latest version (application/pdf)

Related works:
Working Paper: Estimation Considerations in Contextual Bandits (2018)
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1711.07077

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1711.07077