Fluctuation identities with continuous monitoring and their application to price barrier options
Carolyn E. Phelan,
Daniele Marazzina,
Gianluca Fusai and
Guido Germano
Papers from arXiv.org
Abstract:
We present a numerical scheme to calculate fluctuation identities for exponential L\'evy processes in the continuous monitoring case. This includes the Spitzer identities for touching a single upper or lower barrier, and the more difficult case of the two-barriers exit problem. These identities are given in the Fourier-Laplace domain and require numerical inverse transforms. Thus we cover a gap in the literature that has mainly studied the discrete monitoring case; indeed, there are no existing numerical methods that deal with the continuous case. As a motivating application we price continuously monitored barrier options with the underlying asset modelled by an exponential L\'evy process. We perform a detailed error analysis of the method and develop error bounds to show how the performance is limited by the truncation error of the sinc-based fast Hilbert transform used for the Wiener-Hopf factorisation. By comparing the results for our new technique with those for the discretely monitored case (which is in the Fourier-$z$ domain) as the monitoring time step approaches zero, we show that the error convergence with continuous monitoring represents a limit for the discretely monitored scheme.
Date: 2017-11
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1712.00077 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1712.00077
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().