Economics at your fingertips  

A cluster driven log-volatility factor model: a deepening on the source of the volatility clustering

Anshul Verma, Riccardo Junior Buonocore and Tiziana di Matteo

Papers from

Abstract: We introduce a new factor model for log volatilities that performs dimensionality reduction and considers contributions globally through the market, and locally through cluster structure and their interactions. We do not assume a-priori the number of clusters in the data, instead using the Directed Bubble Hierarchical Tree (DBHT) algorithm to fix the number of factors. We use the factor model and a new integrated non parametric proxy to study how volatilities contribute to volatility clustering. Globally, only the market contributes to the volatility clustering. Locally for some clusters, the cluster itself contributes statistically to volatility clustering. This is significantly advantageous over other factor models, since the factors can be chosen statistically, whilst also keeping economically relevant factors. Finally, we show that the log volatility factor model explains a similar amount of memory to a Principal Components Analysis (PCA) factor model and an exploratory factor model.

New Economics Papers: this item is included in nep-ecm
Date: 2017-12, Revised 2018-05
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link) Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Bibliographic data for series maintained by arXiv administrators ().

Page updated 2018-05-11
Handle: RePEc:arx:papers:1712.02138