Economics at your fingertips  

RNN-based counterfactual prediction, with an application to homestead policy and public schooling

Jason Poulos and Shuxi Zeng

Papers from

Abstract: This paper proposes a method for estimating the effect of a policy intervention on an outcome over time. We train recurrent neural networks (RNNs) on the history of control unit outcomes to learn a useful representation for predicting future outcomes. The learned representation of control units is then applied to the treated units for predicting counterfactual outcomes. RNNs are specifically structured to exploit temporal dependencies in panel data, and are able to learn negative and nonlinear interactions between control unit outcomes. We apply the method to the problem of estimating the long-run impact of U.S. homestead policy on public school spending.

Date: 2017-12, Revised 2021-05
New Economics Papers: this item is included in nep-big, nep-cmp, nep-ecm and nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Published in J. R. Stat. Soc., 70(4):1124-1139 (2021)

Downloads: (external link) Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Bibliographic data for series maintained by arXiv administrators ().

Page updated 2021-08-24
Handle: RePEc:arx:papers:1712.03553