EconPapers    
Economics at your fingertips  
 

Risk Sensitive Portfolio Optimization with Default Contagion and Regime-Switching

Lijun Bo, Huafu Liao and Xiang Yu

Papers from arXiv.org

Abstract: We study an open problem of risk-sensitive portfolio allocation in a regime-switching credit market with default contagion. The state space of the Markovian regime-switching process is assumed to be a countably infinite set. To characterize the value function, we investigate the corresponding recursive infinite-dimensional nonlinear dynamical programming equations (DPEs) based on default states. We propose to work in the following procedure: Applying the theory of monotone dynamical system, we first establish the existence and uniqueness of classical solutions to the recursive DPEs by a truncation argument in the finite state space. The associated optimal feedback strategy is characterized by developing a rigorous verification theorem. Building upon results in the first stage, we construct a sequence of approximating risk sensitive control problems with finite states and prove that the resulting smooth value functions will converge to the classical solution of the original system of DPEs. The construction and approximation of the optimal feedback strategy for the original problem are also thoroughly discussed.

Date: 2017-12, Revised 2018-10
New Economics Papers: this item is included in nep-ore and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1712.05676 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1712.05676

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1712.05676