EconPapers    
Economics at your fingertips  
 

Towards a General Large Sample Theory for Regularized Estimators

Michael Jansson and Demian Pouzo

Papers from arXiv.org

Abstract: We present a general framework for studying regularized estimators; such estimators are pervasive in estimation problems wherein "plug-in" type estimators are either ill-defined or ill-behaved. Within this framework, we derive, under primitive conditions, consistency and a generalization of the asymptotic linearity property. We also provide data-driven methods for choosing tuning parameters that, under some conditions, achieve the aforementioned properties. We illustrate the scope of our approach by presenting a wide range of applications.

Date: 2017-12, Revised 2020-07
New Economics Papers: this item is included in nep-big and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1712.07248 Latest version (application/pdf)

Related works:
Working Paper: Towards a general large sample theory for regularized estimators (2019) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1712.07248

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:1712.07248