EconPapers    
Economics at your fingertips  
 

Maximizing the Collective Learning Effects in Regional Economic Development

Jian Gao

Papers from arXiv.org

Abstract: Collective learning in economic development has been revealed by recent empirical studies, however, investigations on how to benefit most from its effects remain still lacking. In this paper, we explore the maximization of the collective learning effects using a simple propagation model to study the diversification of industries on real networks built on Brazilian labor data. For the inter-regional learning, we find an optimal strategy that makes a balance between core and periphery industries in the initial activation, considering the core-periphery structure of the industry space--a network representation of the relatedness between industries. For the inter-regional learning, we find an optimal strategy that makes a balance between nearby and distant regions in establishing new spatial connections, considering the spatial structure of the integrated adjacent network that connects all regions. Our findings suggest that the near to by random strategies are likely to make the best use of the collective learning effects in advancing regional economic development practices.

Date: 2017-12
New Economics Papers: this item is included in nep-geo and nep-ure
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Published in 2017 14th ICCWAMTIP, IEEE, 2017, pp. 337-341

Downloads: (external link)
http://arxiv.org/pdf/1712.08876 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1712.08876

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1712.08876