Economics at your fingertips  

Optimal Timing to Trade Along a Randomized Brownian Bridge

Tim Leung (), Jiao Li and Xin Li

Papers from

Abstract: This paper studies an optimal trading problem that incorporates the trader's market view on the terminal asset price distribution and uninformative noise embedded in the asset price dynamics. We model the underlying asset price evolution by an exponential randomized Brownian bridge (rBb) and consider various prior distributions for the random endpoint. We solve for the optimal strategies to sell a stock, call, or put, and analyze the associated delayed liquidation premia. We solve for the optimal trading strategies numerically and compare them across different prior beliefs. Among our results, we find that disconnected continuation/exercise regions arise when the trader prescribe a two-point discrete distribution and double exponential distribution.

Date: 2017-12, Revised 2018-08
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3) Track citations by RSS feed

Downloads: (external link) Latest version (application/pdf)

Related works:
Journal Article: Optimal Timing to Trade along a Randomized Brownian Bridge (2018) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Bibliographic data for series maintained by arXiv administrators ().

Page updated 2019-09-16
Handle: RePEc:arx:papers:1801.00372