EconPapers    
Economics at your fingertips  
 

Learning from Neighbors about a Changing State

Krishna Dasaratha, Benjamin Golub and Nir Hak

Papers from arXiv.org

Abstract: Agents learn about a changing state using private signals and their neighbors' past estimates of the state. We present a model in which Bayesian agents in equilibrium use neighbors' estimates simply by taking weighted sums with time-invariant weights. The dynamics thus parallel those of the tractable DeGroot model of learning in networks, but arise as an equilibrium outcome rather than a behavioral assumption. We examine whether information aggregation is nearly optimal as neighborhoods grow large. A key condition for this is signal diversity: each individual's neighbors have private signals that not only contain independent information, but also have sufficiently different distributions. Without signal diversity $\unicode{x2013}$ e.g., if private signals are i.i.d. $\unicode{x2013}$ learning is suboptimal in all networks and highly inefficient in some. Turning to social influence, we find it is much more sensitive to one's signal quality than to one's number of neighbors, in contrast to standard models with exogenous updating rules.

Date: 2018-01, Revised 2022-11
New Economics Papers: this item is included in nep-gth and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://arxiv.org/pdf/1801.02042 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1801.02042

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1801.02042