Short- to Mid-term Day-Ahead Electricity Price Forecasting Using Futures
Rick Steinert and
Florian Ziel
Papers from arXiv.org
Abstract:
Due to the liberalization of markets, the change in the energy mix and the surrounding energy laws, electricity research is a dynamically altering field with steadily changing challenges. One challenge especially for investment decisions is to provide reliable short to mid-term forecasts despite high variation in the time series of electricity prices. This paper tackles this issue in a promising and novel approach. By combining the precision of econometric autoregressive models in the short-run with the expectations of market participants reflected in future prices for the short- and mid-run we show that the forecasting performance can be vastly increased while maintaining hourly precision. We investigate the day-ahead electricity price of the EPEX Spot for Germany and Austria and setup a model which incorporates the Phelix future of the EEX for Germany and Austria. The model can be considered as an AR24-X model with one distinct model for each hour of the day. We are able to show that future data contains relevant price information for future time periods of the day-ahead electricity price. We show that relying only on deterministic external regressors can provide stability for forecast horizons of multiple weeks. By implementing a fast and efficient lasso estimation approach we demonstrate that our model can outperform several other models in the literature.
Date: 2018-01
New Economics Papers: this item is included in nep-ene and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Published in The Energy Journal, 40.1 (2019) 105-127
Downloads: (external link)
http://arxiv.org/pdf/1801.10583 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1801.10583
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().