Explicit size distributions of failure cascades redefine systemic risk on finite networks
Rebekka Burkholz,
Hans J. Herrmann and
Frank Schweitzer
Papers from arXiv.org
Abstract:
How big is the risk that a few initial failures of nodes in a network amplify to large cascades that span a substantial share of all nodes? Predicting the final cascade size is critical to ensure the functioning of a system as a whole. Yet, this task is hampered by uncertain or changing parameters and missing information. In infinitely large networks, the average cascade size can often be well estimated by established approaches building on local tree approximations and mean field approximations. Yet, as we demonstrate, in finite networks, this average does not even need to be a likely outcome. Instead, we find broad and even bimodal cascade size distributions. This phenomenon persists for system sizes up to $10^{7}$ and different cascade models, i.e. it is relevant for most real systems. To show this, we derive explicit closed-form solutions for the full probability distribution of the final cascade size. We focus on two topological limit cases, the complete network representing a dense network with a very narrow degree distribution, and the star network representing a sparse network with a inhomogeneous degree distribution. Those topologies are of great interest, as they either minimize or maximize the average cascade size and are common motifs in many real world networks.
Date: 2018-02
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1802.03286 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1802.03286
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().