EconPapers    
Economics at your fingertips  
 

Optimization-Based Algorithm for Evolutionarily Stable Strategies against Pure Mutations

Sam Ganzfried

Papers from arXiv.org

Abstract: Evolutionarily stable strategy (ESS) is an important solution concept in game theory which has been applied frequently to biological models. Informally an ESS is a strategy that if followed by the population cannot be taken over by a mutation strategy that is initially rare. Finding such a strategy has been shown to be difficult from a theoretical complexity perspective. We present an algorithm for the case where mutations are restricted to pure strategies, and present experiments on several game classes including random and a recently-proposed cancer model. Our algorithm is based on a mixed-integer non-convex feasibility program formulation, which constitutes the first general optimization formulation for this problem. It turns out that the vast majority of the games included in the experiments contain ESS with small support, and our algorithm is outperformed by a support-enumeration based approach. However we suspect our algorithm may be useful in the future as games are studied that have ESS with potentially larger and unknown support size.

Date: 2018-03, Revised 2019-01
New Economics Papers: this item is included in nep-evo and nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1803.00607 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1803.00607

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1803.00607