Economics at your fingertips  

Comparing Asset Pricing Models: Distance-based Metrics and Bayesian Interpretations

Zhongzhi Lawrence He

Papers from

Abstract: In light of the power problems of statistical tests and undisciplined use of alpha-based statistics to compare models, this paper proposes a unified set of distance-based performance metrics, derived as the square root of the sum of squared alphas and squared standard errors. The Bayesian investor views model performance as the shortest distance between his dogmatic belief (model-implied distribution) and complete skepticism (data-based distribution) in the model, and favors models that produce low dispersion of alphas with high explanatory power. In this view, the momentum factor is a crucial addition to the five-factor model of Fama and French (2015), alleviating his prior concern of model mispricing by -8% to 8% per annum. The distance metrics complement the frequentist p-values with a diagnostic tool to guard against bad models.

New Economics Papers: this item is included in nep-ecm
Date: 2018-03
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link) Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Bibliographic data for series maintained by arXiv administrators ().

Page updated 2018-03-28
Handle: RePEc:arx:papers:1803.01389