Pareto optimal moral-hazard-free insurance contracts in behavioral finance framework
Zuo Quan Xu
Papers from arXiv.org
Abstract:
This paper investigates Pareto optimal (PO, for short) insurance contracts in a behavioral finance framework, in which the insured evaluates contracts by the rank-dependent utility (RDU) theory and the insurer by the expected value premium principle. The incentive compatibility constraint is taken into account, so the contracts are free of moral hazard. The problem is initially formulated as a non-concave maximization problem involving Choquet expectation, then turned into a quantile optimization problem and tackled by calculus of variations method. The optimal contracts are expressed by a double-obstacle ordinary differential equation for a semi-linear second-order elliptic operator with nonlocal boundary conditions. We provide a simple numerical scheme as well as a numerical example to calculate the optimal contracts. Let $\theta$ and $m_0$ denote the relative safety loading and the mass of the potential loss at 0. We find that every moral-hazard-free contract is optimal for infinitely many RDU insureds if $0 \frac{m_0}{1-m_0}$. We also derive all the PO contracts when either the compensations or the retentions loss monotonicity.
Date: 2018-03, Revised 2021-08
New Economics Papers: this item is included in nep-ias
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/1803.02546 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1803.02546
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().