Approximation of Some Multivariate Risk Measures for Gaussian Risks
E. Hashorva
Papers from arXiv.org
Abstract:
Gaussian random vectors exhibit the loss of dimension phenomena, which relate to their joint survival tail behaviour. Besides, the fact that the components of such vectors are light-tailed complicates the approximations of various multivariate risk measures significantly. In this contribution we derive precise approximations of marginal mean excess, marginal expected shortfall and multivariate conditional tail expectation of Gaussian random vectors and highlight links with conditional limit theorems. Our study indicates that similar results hold for elliptical and Gaussian like multivariate risks.
Date: 2018-03, Revised 2018-10
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1803.06922 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1803.06922
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().