Sparse Reduced Rank Regression With Nonconvex Regularization
Ziping Zhao and
Daniel P. Palomar
Papers from arXiv.org
Abstract:
In this paper, the estimation problem for sparse reduced rank regression (SRRR) model is considered. The SRRR model is widely used for dimension reduction and variable selection with applications in signal processing, econometrics, etc. The problem is formulated to minimize the least squares loss with a sparsity-inducing penalty considering an orthogonality constraint. Convex sparsity-inducing functions have been used for SRRR in literature. In this work, a nonconvex function is proposed for better sparsity inducing. An efficient algorithm is developed based on the alternating minimization (or projection) method to solve the nonconvex optimization problem. Numerical simulations show that the proposed algorithm is much more efficient compared to the benchmark methods and the nonconvex function can result in a better estimation accuracy.
Date: 2018-03
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1803.07247 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1803.07247
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).