# Continuous Record Asymptotics for Structural Change Models

*Alessandro Casini* and
*Pierre Perron* ()

Papers from arXiv.org

**Abstract:**
For a partial structural change in a linear regression model with a single break, we develop a continuous record asymptotic framework to build inference methods for the break date. We have T observations with a sampling frequency h over a fixed time horizon [0, N] , and let T with h 0 while keeping the time span N fixed. We impose very mild regularity conditions on an underlying continuous-time model assumed to generate the data. We consider the least-squares estimate of the break date and establish consistency and convergence rate. We provide a limit theory for shrinking magnitudes of shifts and locally increasing variances. The asymptotic distribution corresponds to the location of the extremum of a function of the quadratic variation of the regressors and of a Gaussian centered martingale process over a certain time interval. We can account for the asymmetric informational content provided by the pre- and post-break regimes and show how the location of the break and shift magnitude are key ingredients in shaping the distribution. We consider a feasible version based on plug-in estimates, which provides a very good approximation to the finite sample distribution. We use the concept of Highest Density Region to construct confidence sets. Overall, our method is reliable and delivers accurate coverage probabilities and relatively short average length of the confidence sets. Importantly, it does so irrespective of the size of the break.

**New Economics Papers:** this item is included in nep-ecm and nep-ets

**Date:** 2018-03, Revised 2019-10

**References:** View references in EconPapers View complete reference list from CitEc

**Citations:** Track citations by RSS feed

**Downloads:** (external link)

http://arxiv.org/pdf/1803.10881 Latest version (application/pdf)

**Related works:**

Working Paper: Continuous Record Asymptotics for Structural Change Models (2017)

This item may be available elsewhere in EconPapers: Search for items with the same title.

**Export reference:** BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text

**Persistent link:** https://EconPapers.repec.org/RePEc:arx:papers:1803.10881

Access Statistics for this paper

More papers in Papers from arXiv.org

Bibliographic data for series maintained by arXiv administrators ().