EconPapers    
Economics at your fingertips  
 

Continuous Record Laplace-based Inference about the Break Date in Structural Change Models

Alessandro Casini and Pierre Perron

Papers from arXiv.org

Abstract: Building upon the continuous record asymptotic framework recently introduced by Casini and Perron (2018a) for inference in structural change models, we propose a Laplace-based (Quasi-Bayes) procedure for the construction of the estimate and confidence set for the date of a structural change. It is defined by an integration rather than an optimization-based method. A transformation of the least-squares criterion function is evaluated in order to derive a proper distribution, referred to as the Quasi-posterior. For a given choice of a loss function, the Laplace-type estimator is the minimizer of the expected risk with the expectation taken under the Quasi-posterior. Besides providing an alternative estimate that is more precise|lower mean absolute error (MAE) and lower root-mean squared error (RMSE)|than the usual least-squares one, the Quasi-posterior distribution can be used to construct asymptotically valid inference using the concept of Highest Density Region. The resulting Laplace-based inferential procedure is shown to have lower MAE and RMSE, and the confidence sets strike the best balance between empirical coverage rates and average lengths of the confidence sets relative to traditional long-span methods, whether the break size is small or large.

Date: 2018-03, Revised 2020-05
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://arxiv.org/pdf/1804.00232 Latest version (application/pdf)

Related works:
Journal Article: Continuous record Laplace-based inference about the break date in structural change models (2021) Downloads
Working Paper: Continuous Record Laplace-based Inference about the Break Date in Structural Change Models (2020) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1804.00232

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:1804.00232