Simultaneous Mean-Variance Regression
Richard Spady and
Sami Stouli
Papers from arXiv.org
Abstract:
We propose simultaneous mean-variance regression for the linear estimation and approximation of conditional mean functions. In the presence of heteroskedasticity of unknown form, our method accounts for varying dispersion in the regression outcome across the support of conditioning variables by using weights that are jointly determined with the mean regression parameters. Simultaneity generates outcome predictions that are guaranteed to improve over ordinary least-squares prediction error, with corresponding parameter standard errors that are automatically valid. Under shape misspecification of the conditional mean and variance functions, we establish existence and uniqueness of the resulting approximations and characterize their formal interpretation and robustness properties. In particular, we show that the corresponding mean-variance regression location-scale model weakly dominates the ordinary least-squares location model under a Kullback-Leibler measure of divergence, with strict improvement in the presence of heteroskedasticity. The simultaneous mean-variance regression loss function is globally convex and the corresponding estimator is easy to implement. We establish its consistency and asymptotic normality under misspecification, provide robust inference methods, and present numerical simulations that show large improvements over ordinary and weighted least-squares in terms of estimation and inference in finite samples. We further illustrate our method with two empirical applications to the estimation of the relationship between economic prosperity in 1500 and today, and demand for gasoline in the United States.
Date: 2018-04, Revised 2019-01
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1804.01631 Latest version (application/pdf)
Related works:
Working Paper: Simultaneous Mean-Variance Regression (2018) 
Working Paper: Simultaneous mean-variance regression (2018) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1804.01631
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().