EconPapers    
Economics at your fingertips  
 

Reducing Estimation Risk in Mean-Variance Portfolios with Machine Learning

Daniel Kinn

Papers from arXiv.org

Abstract: In portfolio analysis, the traditional approach of replacing population moments with sample counterparts may lead to suboptimal portfolio choices. I show that optimal portfolio weights can be estimated using a machine learning (ML) framework, where the outcome to be predicted is a constant and the vector of explanatory variables is the asset returns. It follows that ML specifically targets estimation risk when estimating portfolio weights, and that "off-the-shelf" ML algorithms can be used to estimate the optimal portfolio in the presence of parameter uncertainty. The framework nests the traditional approach and recently proposed shrinkage approaches as special cases. By relying on results from the ML literature, I derive new insights for existing approaches and propose new estimation methods. Based on simulation studies and several datasets, I find that ML significantly reduces estimation risk compared to both the traditional approach and the equal weight strategy.

Date: 2018-04, Revised 2018-07
New Economics Papers: this item is included in nep-big, nep-cmp, nep-ecm, nep-rmg and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1804.01764 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1804.01764

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1804.01764