Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective
Laura Liu
Papers from arXiv.org
Abstract:
This paper constructs individual-specific density forecasts for a panel of firms or households using a dynamic linear model with common and heterogeneous coefficients as well as cross-sectional heteroskedasticity. The panel considered in this paper features a large cross-sectional dimension N but short time series T. Due to the short T, traditional methods have difficulty in disentangling the heterogeneous parameters from the shocks, which contaminates the estimates of the heterogeneous parameters. To tackle this problem, I assume that there is an underlying distribution of heterogeneous parameters, model this distribution nonparametrically allowing for correlation between heterogeneous parameters and initial conditions as well as individual-specific regressors, and then estimate this distribution by combining information from the whole panel. Theoretically, I prove that in cross-sectional homoskedastic cases, both the estimated common parameters and the estimated distribution of the heterogeneous parameters achieve posterior consistency, and that the density forecasts asymptotically converge to the oracle forecast. Methodologically, I develop a simulation-based posterior sampling algorithm specifically addressing the nonparametric density estimation of unobserved heterogeneous parameters. Monte Carlo simulations and an empirical application to young firm dynamics demonstrate improvements in density forecasts relative to alternative approaches.
Date: 2018-05, Revised 2021-10
New Economics Papers: this item is included in nep-ecm and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/1805.04178 Latest version (application/pdf)
Related works:
Working Paper: Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective (2020) 
Working Paper: Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective (2018) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1805.04178
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().