EconPapers    
Economics at your fingertips  
 

Forward-looking portfolio selection with multivariate non-Gaussian models and the Esscher transform

Michele Leonardo Bianchi and Gian Luca Tassinari

Papers from arXiv.org

Abstract: In this study we suggest a portfolio selection framework based on option-implied information and multivariate non-Gaussian models. The proposed models incorporate skewness, kurtosis and more complex dependence structures among stocks log-returns than the simple correlation matrix. The two models considered are a multivariate extension of the normal tempered stable (NTS) model and the generalized hyperbolic (GH) model, respectively, and the connection between the historical measure P and the risk-neutral measure Q is given by the Esscher transform. We consider an estimation method that simultaneously calibrate the time series of univariate log-returns and the univariate observed volatility smile. To calibrate the models, there is no need of liquid multivariate derivative quotes. The method is applied to fit a 50-dimensional series of stock returns, to evaluate widely known portfolio risk measures and to perform a portfolio selection analysis.

Date: 2018-05, Revised 2018-05
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://arxiv.org/pdf/1805.05584 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1805.05584

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1805.05584