EconPapers    
Economics at your fingertips  
 

Learning non-smooth models: instrumental variable quantile regressions and related problems

Yinchu Zhu ()

Papers from arXiv.org

Abstract: This paper proposes computationally efficient methods that can be used for instrumental variable quantile regressions (IVQR) and related methods with statistical guarantees. This is much needed when we investigate heterogenous treatment effects since interactions between the endogenous treatment and control variables lead to an increased number of endogenous covariates. We prove that the GMM formulation of IVQR is NP-hard and finding an approximate solution is also NP-hard. Hence, solving the problem from a purely computational perspective seems unlikely. Instead, we aim to obtain an estimate that has good statistical properties and is not necessarily the global solution of any optimization problem. The proposal consists of employing $k$-step correction on an initial estimate. The initial estimate exploits the latest advances in mixed integer linear programming and can be computed within seconds. One theoretical contribution is that such initial estimators and Jacobian of the moment condition used in the k-step correction need not be even consistent and merely $k=4\log n$ fast iterations are needed to obtain an efficient estimator. The overall proposal scales well to handle extremely large sample sizes because lack of consistency requirement allows one to use a very small subsample to obtain the initial estimate and the k-step iterations on the full sample can be implemented efficiently. Another contribution that is of independent interest is to propose a tuning-free estimation for the Jacobian matrix, whose definition nvolves conditional densities. This Jacobian estimator generalizes bootstrap quantile standard errors and can be efficiently computed via closed-end solutions. We evaluate the performance of the proposal in simulations and an empirical example on the heterogeneous treatment effect of Job Training Partnership Act.

Date: 2018-05, Revised 2019-09
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://arxiv.org/pdf/1805.06855 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1805.06855

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1805.06855