Neural networks for stock price prediction
Yue-Gang Song,
Yu-Long Zhou and
Ren-Jie Han
Papers from arXiv.org
Abstract:
Due to the extremely volatile nature of financial markets, it is commonly accepted that stock price prediction is a task full of challenge. However in order to make profits or understand the essence of equity market, numerous market participants or researchers try to forecast stock price using various statistical, econometric or even neural network models. In this work, we survey and compare the predictive power of five neural network models, namely, back propagation (BP) neural network, radial basis function (RBF) neural network, general regression neural network (GRNN), support vector machine regression (SVMR), least squares support vector machine regresssion (LS-SVMR). We apply the five models to make price prediction of three individual stocks, namely, Bank of China, Vanke A and Kweichou Moutai. Adopting mean square error and average absolute percentage error as criteria, we find BP neural network consistently and robustly outperforms the other four models.
Date: 2018-05
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/1805.11317 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1805.11317
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().