Economics at your fingertips  

Ill-posed Estimation in High-Dimensional Models with Instrumental Variables

Christoph Breunig, Enno Mammen and Anna Simoni

Papers from

Abstract: This paper is concerned with inference about low-dimensional components of a high-dimensional parameter vector beta_0 which is identified through in- strumental variables. We allow for eigenvalues of the expected outer product of included and excluded covariates, denoted by M, to shrink to zero as the sample size increases. We propose a novel estimator based on desparsi- fication of an instrumental variable Lasso estimator, which is a regularized version of 2SLS with an additional correction term. This estimator converges to beta_0 at a rate depending on the mapping properties of M captured by a sparse link condition. Linear combinations of our estimator of beta_0 are shown to be asymptotically normally distributed. Based on consistent covariance estimation, our method allows for constructing confidence intervals and sta- tistical tests for single or low-dimensional components of beta_0. In Monte-Carlo simulations we analyze the finite sample behavior of our estimator.

New Economics Papers: this item is included in nep-ecm and nep-knm
Date: 2018-06
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Bibliographic data for series maintained by arXiv administrators ().

Page updated 2019-09-07
Handle: RePEc:arx:papers:1806.00666