EconPapers    
Economics at your fingertips  
 

Trading algorithms with learning in latent alpha models

Philippe Casgrain and Sebastian Jaimungal

Papers from arXiv.org

Abstract: Alpha signals for statistical arbitrage strategies are often driven by latent factors. This paper analyses how to optimally trade with latent factors that cause prices to jump and diffuse. Moreover, we account for the effect of the trader's actions on quoted prices and the prices they receive from trading. Under fairly general assumptions, we demonstrate how the trader can learn the posterior distribution over the latent states, and explicitly solve the latent optimal trading problem. We provide a verification theorem, and a methodology for calibrating the model by deriving a variation of the expectation-maximization algorithm. To illustrate the efficacy of the optimal strategy, we demonstrate its performance through simulations and compare it to strategies which ignore learning in the latent factors. We also provide calibration results for a particular model using Intel Corporation stock as an example.

New Economics Papers: this item is included in nep-mst
Date: 2018-06
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Published in Mathematical Finance, Forthcoming, 2018

Downloads: (external link)
http://arxiv.org/pdf/1806.04472 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1806.04472

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2018-07-17
Handle: RePEc:arx:papers:1806.04472