Measurement Errors as Bad Leverage Points
Eric Blankmeyer
Papers from arXiv.org
Abstract:
Errors-in-variables is a long-standing, difficult issue in linear regression; and progress depends in part on new identifying assumptions. I characterize measurement error as bad-leverage points and assume that fewer than half the sample observations are heavily contaminated, in which case a high-breakdown robust estimator may be able to isolate and down weight or discard the problematic data. In simulations of simple and multiple regression where eiv affects 25% of the data and R-squared is mediocre, certain high-breakdown estimators have small bias and reliable confidence intervals.
Date: 2018-07, Revised 2020-03
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1807.02814 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1807.02814
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().