Forecasting market states
Pier Francesco Procacci and
Tomaso Aste
Papers from arXiv.org
Abstract:
We propose a novel methodology to define, analyze and forecast market states. In our approach market states are identified by a reference sparse precision matrix and a vector of expectation values. In our procedure, each multivariate observation is associated with a given market state accordingly to a minimization of a penalized Mahalanobis distance. The procedure is made computationally very efficient and can be used with a large number of assets. We demonstrate that this procedure is successful at clustering different states of the markets in an unsupervised manner. In particular, we describe an experiment with one hundred log-returns and two states in which the methodology automatically associates states prevalently to pre- and post- crisis periods with one state gathering periods with average positive returns and the other state periods with average negative returns, therefore discovering spontaneously the common classification of `bull' and `bear' markets. In another experiment, with again one hundred log-returns and two states, we demonstrate that this procedure can be efficiently used to forecast off-sample future market states with significant prediction accuracy. This methodology opens the way to a range of applications in risk management and trading strategies in the context where the correlation structure plays a central role.
Date: 2018-07, Revised 2019-05
New Economics Papers: this item is included in nep-for and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Published in Quantitative Finance 19 (2019) 1491-1498
Downloads: (external link)
http://arxiv.org/pdf/1807.05836 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1807.05836
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().