A unifying approach to constrained and unconstrained optimal reinsurance
Yuxia Huang and
Chuancun Yin
Papers from arXiv.org
Abstract:
In this paper, we study two classes of optimal reinsurance models from perspectives of both insurers and reinsurers by minimizing their convex combination where the risk is measured by a distortion risk measure and the premium is given by a distortion premium principle. Firstly, we show that how optimal reinsurance models for the unconstrained optimization problem and constrained optimization problems can be formulated in a unified way. Secondly, we propose a geometric approach to solve optimal reinsurance problems directly. This paper considers a class of increasing convex ceded loss functions and derives the explicit solutions of the optimal reinsurance which can be in forms of quota-share, stop-loss, change-loss, the combination of quota-share and change-loss or the combination of change-loss and change-loss with different retentions. Finally, we consider two specific cases: Value at Risk (VaR) and Tail Value at Risk (TVaR).
Date: 2018-07
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1807.06892 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1807.06892
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().