Change Point Estimation in Panel Data with Time-Varying Individual Effects
Otilia Boldea,
Bettina Drepper and
Zhuojiong Gan
Papers from arXiv.org
Abstract:
This paper proposes a method for estimating multiple change points in panel data models with unobserved individual effects via ordinary least-squares (OLS). Typically, in this setting, the OLS slope estimators are inconsistent due to the unobserved individual effects bias. As a consequence, existing methods remove the individual effects before change point estimation through data transformations such as first-differencing. We prove that under reasonable assumptions, the unobserved individual effects bias has no impact on the consistent estimation of change points. Our simulations show that since our method does not remove any variation in the dataset before change point estimation, it performs better in small samples compared to first-differencing methods. We focus on short panels because they are commonly used in practice, and allow for the unobserved individual effects to vary over time. Our method is illustrated via two applications: the environmental Kuznets curve and the U.S. house price expectations after the financial crisis.
Date: 2018-08
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1808.03109 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1808.03109
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().