NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation
Anastasis Kratsios and
Cody Hyndman
Papers from arXiv.org
Abstract:
Effective feature representation is key to the predictive performance of any algorithm. This paper introduces a meta-procedure, called Non-Euclidean Upgrading (NEU), which learns feature maps that are expressive enough to embed the universal approximation property (UAP) into most model classes while only outputting feature maps that preserve any model class's UAP. We show that NEU can learn any feature map with these two properties if that feature map is asymptotically deformable into the identity. We also find that the feature-representations learned by NEU are always submanifolds of the feature space. NEU's properties are derived from a new deep neural model that is universal amongst all orientation-preserving homeomorphisms on the input space. We derive qualitative and quantitative approximation guarantees for this architecture. We quantify the number of parameters required for this new architecture to memorize any set of input-output pairs while simultaneously fixing every point of the input space lying outside some compact set, and we quantify the size of this set as a function of our model's depth. Moreover, we show that no deep feed-forward network with commonly used activation function has all these properties. NEU's performance is evaluated against competing machine learning methods on various regression and dimension reduction tasks both with financial and simulated data.
Date: 2018-08, Revised 2021-05
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Published in Journal of Machine Learning Research (JMLR), Volume: 22; 2021
Downloads: (external link)
http://arxiv.org/pdf/1809.00082 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1809.00082
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).