EconPapers    
Economics at your fingertips  
 

Generalizing Geometric Brownian Motion

Peter Carr and Zhibai Zhang

Papers from arXiv.org

Abstract: To convert standard Brownian motion $Z$ into a positive process, Geometric Brownian motion (GBM) $e^{\beta Z_t}, \beta >0$ is widely used. We generalize this positive process by introducing an asymmetry parameter $ \alpha \geq 0$ which describes the instantaneous volatility whenever the process reaches a new low. For our new process, $\beta$ is the instantaneous volatility as prices become arbitrarily high. Our generalization preserves the positivity, constant proportional drift, and tractability of GBM, while expressing the instantaneous volatility as a randomly weighted $L^2$ mean of $\alpha$ and $\beta$. The running minimum and relative drawup of this process are also analytically tractable. Letting $\alpha = \beta$, our positive process reduces to Geometric Brownian motion. By adding a jump to default to the new process, we introduce a non-negative martingale with the same tractabilities. Assuming a security's dynamics are driven by these processes in risk neutral measure, we price several derivatives including vanilla, barrier and lookback options.

Date: 2018-09
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1809.02245 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1809.02245

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:1809.02245