Constructing Financial Sentimental Factors in Chinese Market Using Natural Language Processing
Junfeng Jiang and
Jiahao Li
Papers from arXiv.org
Abstract:
In this paper, we design an integrated algorithm to evaluate the sentiment of Chinese market. Firstly, with the help of the web browser automation, we crawl a lot of news and comments from several influential financial websites automatically. Secondly, we use techniques of Natural Language Processing(NLP) under Chinese context, including tokenization, Word2vec word embedding and semantic database WordNet, to compute Senti-scores of these news and comments, and then construct the sentimental factor. Here, we build a finance-specific sentimental lexicon so that the sentimental factor can reflect the sentiment of financial market but not the general sentiments as happiness, sadness, etc. Thirdly, we also implement an adjustment of the standard sentimental factor. Our experimental performance shows that there is a significant correlation between our standard sentimental factor and the Chinese market, and the adjusted factor is even more informative, having a stronger correlation with the Chinese market. Therefore, our sentimental factors can be important references when making investment decisions. Especially during the Chinese market crash in 2015, the Pearson correlation coefficient of adjusted sentimental factor with SSE is 0.5844, which suggests that our model can provide a solid guidance, especially in the special period when the market is influenced greatly by public sentiment.
Date: 2018-09
New Economics Papers: this item is included in nep-big
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1809.08390 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1809.08390
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().