EconPapers    
Economics at your fingertips  
 

A big data based method for pass rates optimization in mathematics university lower division courses

Fernando A Morales, Cristian C Chica, Carlos A Osorio and Daniel Cabarcas J

Papers from arXiv.org

Abstract: In this paper an algorithm designed for large databases is introduced for the enhancement of pass rates in mathematical university lower division courses with several sections. Using integer programming techniques, the algorithm finds the optimal pairing of students and lecturers in order to maximize the success chances of the students' body. The students-lecturer success probability is computed according to their corresponding profiles stored in the data bases.

Date: 2018-09, Revised 2020-10
New Economics Papers: this item is included in nep-big
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1809.09724 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1809.09724

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1809.09724