Capturing Model Risk and Rating Momentum in the Estimation of Probabilities of Default and Credit Rating Migrations
Marius Pfeuffer,
Goncalo dos Reis and
Greig Smith
Papers from arXiv.org
Abstract:
We present two methodologies on the estimation of rating transition probabilities within Markov and non-Markov frameworks. We first estimate a continuous-time Markov chain using discrete (missing) data and derive a simpler expression for the Fisher information matrix, reducing the computational time needed for the Wald confidence interval by a factor of a half. We provide an efficient procedure for transferring such uncertainties from the generator matrix of the Markov chain to the corresponding rating migration probabilities and, crucially, default probabilities. For our second contribution, we assume access to the full (continuous) data set and propose a tractable and parsimonious self-exciting marked point processes model able to capture the non-Markovian effect of rating momentum. Compared to the Markov model, the non-Markov model yields higher probabilities of default in the investment grades, but also lower default probabilities in some speculative grades. Both findings agree with empirical observations and have clear practical implications. We illustrate all methods using data from Moody's proprietary corporate credit ratings data set. Implementations are available in the R package ctmcd.
Date: 2018-09, Revised 2020-02
New Economics Papers: this item is included in nep-ban and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://arxiv.org/pdf/1809.09889 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1809.09889
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().