Empirical Survival Jensen-Shannon Divergence as a Goodness-of-Fit Measure for Maximum Likelihood Estimation and Curve Fitting
Mark Levene and
Aleksejus Kononovicius
Papers from arXiv.org
Abstract:
The coefficient of determination, known as $R^2$, is commonly used as a goodness-of-fit criterion for fitting linear models. $R^2$ is somewhat controversial when fitting nonlinear models, although it may be generalised on a case-by-case basis to deal with specific models such as the logistic model. Assume we are fitting a parametric distribution to a data set using, say, the maximum likelihood estimation method. A general approach to measure the goodness-of-fit of the fitted parameters, which is advocated herein, is to use a nonparametric measure for comparison between the empirical distribution, comprising the raw data, and the fitted model. In particular, for this purpose we put forward the Survival Jensen-Shannon divergence ($SJS$) and its empirical counterpart (${\cal E}SJS$) as a metric which is bounded, and is a natural generalisation of the Jensen-Shannon divergence. We demonstrate, via a straightforward procedure making use of the ${\cal E}SJS$, that it can be used as part of maximum likelihood estimation or curve fitting as a measure of goodness-of-fit, including the construction of a confidence interval for the fitted parametric distribution. Furthermore, we show the validity of the proposed method with simulated data, and three empirical data sets.
Date: 2018-09, Revised 2019-06
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Published in Communications in Statistics - Simulation and Computation 50: 3751-3767 (2021)
Downloads: (external link)
http://arxiv.org/pdf/1809.11052 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1809.11052
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().