Covariate Distribution Balance via Propensity Scores
Pedro Sant'Anna (),
Xiaojun Song and
Qi Xu
Papers from arXiv.org
Abstract:
This paper proposes new estimators for the propensity score that aim to maximize the covariate distribution balance among different treatment groups. Heuristically, our proposed procedure attempts to estimate a propensity score model by making the underlying covariate distribution of different treatment groups as close to each other as possible. Our estimators are data-driven, do not rely on tuning parameters such as bandwidths, admit an asymptotic linear representation, and can be used to estimate different treatment effect parameters under different identifying assumptions, including unconfoundedness and local treatment effects. We derive the asymptotic properties of inverse probability weighted estimators for the average, distributional, and quantile treatment effects based on the proposed propensity score estimator and illustrate their finite sample performance via Monte Carlo simulations and two empirical applications.
Date: 2018-10, Revised 2020-04
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/1810.01370 Latest version (application/pdf)
Related works:
Journal Article: Covariate distribution balance via propensity scores (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1810.01370
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().