Quantile Regression Under Memory Constraint
Xi Chen,
Weidong Liu and
Yichen Zhang
Papers from arXiv.org
Abstract:
This paper studies the inference problem in quantile regression (QR) for a large sample size $n$ but under a limited memory constraint, where the memory can only store a small batch of data of size $m$. A natural method is the na\"ive divide-and-conquer approach, which splits data into batches of size $m$, computes the local QR estimator for each batch, and then aggregates the estimators via averaging. However, this method only works when $n=o(m^2)$ and is computationally expensive. This paper proposes a computationally efficient method, which only requires an initial QR estimator on a small batch of data and then successively refines the estimator via multiple rounds of aggregations. Theoretically, as long as $n$ grows polynomially in $m$, we establish the asymptotic normality for the obtained estimator and show that our estimator with only a few rounds of aggregations achieves the same efficiency as the QR estimator computed on all the data. Moreover, our result allows the case that the dimensionality $p$ goes to infinity. The proposed method can also be applied to address the QR problem under distributed computing environment (e.g., in a large-scale sensor network) or for real-time streaming data.
Date: 2018-10
New Economics Papers: this item is included in nep-ecm
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Published in Annals of Statistics 2019, 47(6): 3244-3273
Downloads: (external link)
http://arxiv.org/pdf/1810.08264 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1810.08264
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().