EconPapers    
Economics at your fingertips  
 

Global Closed-form Approximation of Free Boundary for Optimal Investment Stopping Problems

Jingtang Ma, Jie Xing and Harry Zheng

Papers from arXiv.org

Abstract: In this paper we study a utility maximization problem with both optimal control and optimal stopping in a finite time horizon. The value function can be characterized by a variational equation that involves a free boundary problem of a fully nonlinear partial differential equation. Using the dual control method, we derive the asymptotic properties of the dual value function and the associated dual free boundary for a class of utility functions, including power and non-HARA utilities. We construct a global closed-form approximation to the dual free boundary, which greatly reduces the computational cost. Using the duality relation, we find the approximate formulas for the optimal value function, trading strategy, and exercise boundary for the optimal investment stopping problem. Numerical examples show the approximation is robust, accurate and fast.

Date: 2018-10
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1810.09397 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1810.09397

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1810.09397