EconPapers    
Economics at your fingertips  
 

Model Selection Techniques -- An Overview

Jie Ding, Vahid Tarokh and Yuhong Yang

Papers from arXiv.org

Abstract: In the era of big data, analysts usually explore various statistical models or machine learning methods for observed data in order to facilitate scientific discoveries or gain predictive power. Whatever data and fitting procedures are employed, a crucial step is to select the most appropriate model or method from a set of candidates. Model selection is a key ingredient in data analysis for reliable and reproducible statistical inference or prediction, and thus central to scientific studies in fields such as ecology, economics, engineering, finance, political science, biology, and epidemiology. There has been a long history of model selection techniques that arise from researches in statistics, information theory, and signal processing. A considerable number of methods have been proposed, following different philosophies and exhibiting varying performances. The purpose of this article is to bring a comprehensive overview of them, in terms of their motivation, large sample performance, and applicability. We provide integrated and practically relevant discussions on theoretical properties of state-of- the-art model selection approaches. We also share our thoughts on some controversial views on the practice of model selection.

New Economics Papers: this item is included in nep-big, nep-cmp and nep-hpe
Date: 2018-10
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/1810.09583 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1810.09583

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2018-11-24
Handle: RePEc:arx:papers:1810.09583