# Robust risk aggregation with neural networks

*Stephan Eckstein*,
*Michael Kupper* and
*Mathias Pohl*

Papers from arXiv.org

**Abstract:**
We consider settings in which the distribution of a multivariate random variable is partly ambiguous. We assume the ambiguity lies on the level of the dependence structure, and that the marginal distributions are known. Furthermore, a current best guess for the distribution, called reference measure, is available. We work with the set of distributions that are both close to the given reference measure in a transportation distance (e.g. the Wasserstein distance), and additionally have the correct marginal structure. The goal is to find upper and lower bounds for integrals of interest with respect to distributions in this set. The described problem appears naturally in the context of risk aggregation. When aggregating different risks, the marginal distributions of these risks are known and the task is to quantify their joint effect on a given system. This is typically done by applying a meaningful risk measure to the sum of the individual risks. For this purpose, the stochastic interdependencies between the risks need to be specified. In practice the models of this dependence structure are however subject to relatively high model ambiguity. The contribution of this paper is twofold: Firstly, we derive a dual representation of the considered problem and prove that strong duality holds. Secondly, we propose a generally applicable and computationally feasible method, which relies on neural networks, in order to numerically solve the derived dual problem. The latter method is tested on a number of toy examples, before it is finally applied to perform robust risk aggregation in a real world instance.

**Date:** 2018-11, Revised 2020-05

**New Economics Papers:** this item is included in nep-cmp and nep-rmg

**References:** View references in EconPapers View complete reference list from CitEc

**Citations:** View citations in EconPapers (1) Track citations by RSS feed

**Downloads:** (external link)

http://arxiv.org/pdf/1811.00304 Latest version (application/pdf)

**Related works:**

This item may be available elsewhere in EconPapers: Search for items with the same title.

**Export reference:** BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text

**Persistent link:** https://EconPapers.repec.org/RePEc:arx:papers:1811.00304

Access Statistics for this paper

More papers in Papers from arXiv.org

Bibliographic data for series maintained by arXiv administrators ().