Continuity of Utility Maximization under Weak Convergence
Erhan Bayraktar,
Yan Dolinsky and
Jia Guo
Papers from arXiv.org
Abstract:
In this paper we find tight sufficient conditions for the continuity of the value of the utility maximization problem from terminal wealth with respect to the convergence in distribution of the underlying processes. We also establish a weak convergence result for the terminal wealths of the optimal portfolios. Finally, we apply our results to the computation of the minimal expected shortfall (shortfall risk) in the Heston model by building an appropriate lattice approximation.
Date: 2018-11, Revised 2020-06
New Economics Papers: this item is included in nep-mic and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://arxiv.org/pdf/1811.01420 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1811.01420
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().