EconPapers    
Economics at your fingertips  
 

Using Stock Prices as Ground Truth in Sentiment Analysis to Generate Profitable Trading Signals

Ellie Birbeck and Dave Cliff

Papers from arXiv.org

Abstract: The increasing availability of "big" (large volume) social media data has motivated a great deal of research in applying sentiment analysis to predict the movement of prices within financial markets. Previous work in this field investigates how the true sentiment of text (i.e. positive or negative opinions) can be used for financial predictions, based on the assumption that sentiments expressed online are representative of the true market sentiment. Here we consider the converse idea, that using the stock price as the ground-truth in the system may be a better indication of sentiment. Tweets are labelled as Buy or Sell dependent on whether the stock price discussed rose or fell over the following hour, and from this, stock-specific dictionaries are built for individual companies. A Bayesian classifier is used to generate stock predictions, which are input to an automated trading algorithm. Placing 468 trades over a 1 month period yields a return rate of 5.18%, which annualises to approximately 83% per annum. This approach performs significantly better than random chance and outperforms two baseline sentiment analysis methods tested.

Date: 2018-11
New Economics Papers: this item is included in nep-big and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://arxiv.org/pdf/1811.02886 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1811.02886

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1811.02886