EconPapers    
Economics at your fingertips  
 

New fat-tail normality test based on conditional second moments with applications to finance

Damian Jelito and Marcin Pitera

Papers from arXiv.org

Abstract: In this paper we introduce an efficient fat-tail measurement framework that is based on the conditional second moments. We construct a goodness-of-fit statistic that has a direct interpretation and can be used to assess the impact of fat-tails on central data conditional dispersion. Next, we show how to use this framework to construct a powerful normality test. In particular, we compare our methodology to various popular normality tests, including the Jarque--Bera test that is based on third and fourth moments, and show that in many cases our framework outperforms all others, both on simulated and market stock data. Finally, we derive asymptotic distributions for conditional mean and variance estimators, and use this to show asymptotic normality of the proposed test statistic.

Date: 2018-11, Revised 2020-04
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1811.05464 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1811.05464

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1811.05464