EconPapers    
Economics at your fingertips  
 

Optimal Estimation with Complete Subsets of Instruments

Seojeong Lee () and Youngki Shin ()

Papers from arXiv.org

Abstract: In this paper we propose a two-stage least squares (2SLS) estimator whose first stage is based on the equal-weight average over a complete subset. We derive the approximate mean squared error (MSE) that depends on the size of the complete subset and characterize the proposed estimator based on the approximate MSE. The size of the complete subset is chosen by minimizing the sample counterpart of the approximate MSE. We show that this method achieves the asymptotic optimality. To deal with weak or irrelevant instruments, we generalize the approximate MSE under the presence of a possibly growing set of irrelevant instruments, which provides useful guidance under weak IV environments. The Monte Carlo simulation results show that the proposed estimator outperforms alternative methods when instruments are correlated with each other and there exists high endogeneity. As an empirical illustration, we estimate the logistic demand function in Berry, Levinsohn, and Pakes (1995).

New Economics Papers: this item is included in nep-ecm
Date: 2018-11, Revised 2018-12
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/1811.08083 Latest version (application/pdf)

Related works:
Working Paper: Optimal Estimation with Complete Subsets of Instruments (2018) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1811.08083

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2019-03-31
Handle: RePEc:arx:papers:1811.08083