EconPapers    
Economics at your fingertips  
 

Neural Network for CVA: Learning Future Values

Jian-Huang She and Dan Grecu

Papers from arXiv.org

Abstract: A new challenge to quantitative finance after the recent financial crisis is the study of credit valuation adjustment (CVA), which requires modeling of the future values of a portfolio. In this paper, following recent work in [Weinan E(2017), Han(2017)], we apply deep learning to attack this problem. The future values are parameterized by neural networks, and the parameters are then determined through optimization. Two concrete products are studied: Bermudan swaption and Mark-to-Market cross-currency swap. We obtain their expected positive/negative exposures, and further study the resulting functional form of future values. Such an approach represents a new framework for modeling XVA, and it also sheds new lights on other methods like American Monte Carlo.

Date: 2018-11
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://arxiv.org/pdf/1811.08726 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1811.08726

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1811.08726