Neural Network for CVA: Learning Future Values
Jian-Huang She and
Dan Grecu
Papers from arXiv.org
Abstract:
A new challenge to quantitative finance after the recent financial crisis is the study of credit valuation adjustment (CVA), which requires modeling of the future values of a portfolio. In this paper, following recent work in [Weinan E(2017), Han(2017)], we apply deep learning to attack this problem. The future values are parameterized by neural networks, and the parameters are then determined through optimization. Two concrete products are studied: Bermudan swaption and Mark-to-Market cross-currency swap. We obtain their expected positive/negative exposures, and further study the resulting functional form of future values. Such an approach represents a new framework for modeling XVA, and it also sheds new lights on other methods like American Monte Carlo.
Date: 2018-11
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/1811.08726 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1811.08726
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().